1,094 research outputs found

    Beetle Diversity in an Eastern Cottonwood (Populus deltoides Bartr.) Plantation and Adjacent Bottomland Hardwood Forest in Southeastern Arkansas

    Get PDF
    Within the Lower Mississippi Alluvial Valley (LMAV),some lands cleared of bottomland hardwood forests have the potential to return to forest as a result of private sector and government interests in Populus cultivation. Specifically, monoculture plantings of eastern cottonwood (Populus deltoides Bartr.) represent an important component of many recent afforestation efforts in the region. The impact establishment of such monocultures will have on native insect communities in the LMAV is relatively unknown. To evaluate this, beetle (Coleoptera) diversity, abundance, and functional distribution were examined within an intensively managed eastern cottonwood plantation and nearby bottomland hardwood forest in southeastern Arkansas. Beetles were sampled in both settings over the summer of 2000 using Malaise traps. When compared to the heterogeneous bottomland hardwood forest, the beetle morphospecies assemblage collected from the plantation was one characterized by lower species diversity and a depauperate xylophagous and fungivorous beetle fauna. Over half of all beetles trapped in the eastern cottonwood plantation were species considered to be economic pests of Populus

    Magellan/M2FS Spectroscopy of Galaxy Clusters: Stellar Population Model and Application to Abell 267

    Get PDF
    We report the results of a pilot program to use the Magellan/M2FS spectrograph to survey the galactic populations and internal kinematics of galaxy clusters. For this initial study, we present spectroscopic measurements for 223223 quiescent galaxies observed along the line of sight to the galaxy cluster Abell 267 (z∼0.23z\sim0.23). We develop a Bayesian method for modeling the integrated light from each galaxy as a simple stellar population, with free parameters that specify redshift (vlos/cv_\mathrm{los}/c) and characteristic age, metallicity ([Fe/H]\mathrm{[Fe/H]}), alpha-abundance ([α/Fe][\alpha/\mathrm{Fe}]), and internal velocity dispersion (σint\sigma_\mathrm{int}) for individual galaxies. Parameter estimates derived from our 1.5-hour observation of A267 have median random errors of σvlos=20 km s−1\sigma_{v_\mathrm{los}}=20\ \mathrm{km\ s^{-1}}, σAge=1.2 Gyr\sigma_{\mathrm{Age}}=1.2\ \mathrm{Gyr}, $\sigma_{\mathrm{[Fe/H]}}=0.11\ \mathrm{dex},, \sigma_{[\alpha/\mathrm{Fe}]}=0.07\ \mathrm{dex},and, and \sigma_{\sigma_\mathrm{int}}=20\ \mathrm{km\ s^{-1}}$. In a companion paper, we use these results to model the structure and internal kinematics of A267.Comment: 16 pages, 11 figures, accepted for publication in The Astronomical Journa

    Transcranial Electrical Stimulation targeting limbic cortex increases the duration of human deep sleep

    Get PDF
    Background: Researchers have proposed that impaired sleep may be a causal link in the progression from Mild Cognitive Impairment (MCI) to Alzheimer's Disease (AD). Several recent findings suggest that enhancing deep sleep (N3) may improve neurological health in persons with MCI, and buffer the risk for AD. Specifically, Transcranial Electrical Stimulation (TES) of frontal brain areas, the inferred source of the Slow Oscillations (SOs) of N3 sleep, can extend N3 sleep duration and improve declarative memory for recently learned information. Recent work in our laboratory using dense array Electroencephalography (dEEG) localized the sources of SOs to anterior limbic sites – suggesting that targeting these sites with TES may be more effective for enhancing N3. Methods: For the present study, we recruited 13 healthy adults (M = 42 years) to participate in three all-night sleep EEG recordings where they received low level (0.5 mA) TES designed to target anterior limbic areas and a sham stimulation (placebo). We used a convolutional neural network, trained and tested on professionally scored EEG sleep staging, to predict sleep stages for each recording. Results: When compared to the sham session, limbic-targeted TES significantly increased the duration of N3 sleep. TES also significantly increased spectral power in the 0.5–1 Hz frequency band (relative to pre-TES epochs) in left temporoparietal and left occipital scalp regions compared to sham. Conclusion: These results suggest that even low-level TES, when specifically targeting anterior limbic sites, can increase deep (N3) sleep and thereby contribute to healthy sleep quality.Fil: Hathaway, Evan. Brain Electrophysiology Laboratory Company; Estados UnidosFil: Morgan, Kyle. Brain Electrophysiology Laboratory Company; Estados UnidosFil: Carson, Megan. Brain Electrophysiology Laboratory Company; Estados UnidosFil: Shusterman, Roma. Brain Electrophysiology Laboratory Company; Estados UnidosFil: Fernandez Corazza, Mariano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones en Electrónica, Control y Procesamiento de Señales. Universidad Nacional de La Plata. Instituto de Investigaciones en Electrónica, Control y Procesamiento de Señales; ArgentinaFil: Luu, Phan. University of Oregon; Estados UnidosFil: Tucker, Don M.. University of Oregon; Estados Unido

    Focal limbic sources create the large slow oscillations of the EEG in human deep sleep

    Get PDF
    Background: Initial observations with the human electroencephalogram (EEG) have interpreted slow oscillations (SOs) of the EEG during deep sleep (N3) as reflecting widespread surface-negative traveling waves that originate in frontal regions and propagate across the neocortex. However, mapping SOs with a high-density array shows the simultaneous appearance of posterior positive voltage fields in the EEG at the time of the frontal-negative fields, with the typical inversion point (apparent source) around the temporal lobe. Methods: Overnight 256-channel EEG recordings were gathered from 10 healthy young adults. Individual head conductivity models were created using each participant's own structural MRI. Source localization of SOs during N3 was then performed. Results: Electrical source localization models confirmed that these large waves were created by focal discharges within the ventral limbic cortex, including medial temporal and caudal orbitofrontal cortex. Conclusions: Although the functional neurophysiology of deep sleep involves interactions between limbic and neocortical networks, the large EEG deflections of deep sleep are not created by distributed traveling waves in lateral neocortex but instead by relatively focal limbic discharges.Fil: Morgan, Kyle K.. Brain Electrophysiology Laboratory Company; Estados UnidosFil: Hathaway, Evan. Brain Electrophysiology Laboratory Company; Estados UnidosFil: Carson, Megan. Brain Electrophysiology Laboratory Company; Estados UnidosFil: Fernandez Corazza, Mariano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones en Electrónica, Control y Procesamiento de Señales. Universidad Nacional de La Plata. Instituto de Investigaciones en Electrónica, Control y Procesamiento de Señales; ArgentinaFil: Shusterman, Roma. Brain Electrophysiology Laboratory Company; Estados UnidosFil: Luu, Phan. Brain Electrophysiology Laboratory Company; Estados Unidos. University of Oregon; Estados UnidosFil: Tucker, Don M.. University of Oregon; Estados Unidos. Brain Electrophysiology Laboratory Company; Estados Unido

    Antioxidant Potential of Juglans Nigra, Black Walnut, Husks Extracted Using Supercritical Carbon Dioxide with an Ethanol Modifier

    Get PDF
    The black walnut, Junglas nigra, is indigenous to eastern North America, and abscission of its fruit occurs around October. The fruit consists of a husk, a hard shell, and kernel. The husk is commonly discarded in processing, though it contains phenolic compounds that exhibit antioxidant and antimicrobial properties. For this study, black walnut husks were extracted using supercritical carbon dioxide with an ethanol modifier. The effects of temperature, ethanol concentration, and drying of walnut husks prior to extraction upon antioxidant potential were evaluated using a factorial design of experiments. The solvent density was held constant at 0.75 g/mL. The optimal extraction conditions were found to be 68°C and 20 wt-% ethanol in supercritical carbon dioxide. At these conditions, the antioxidant potential as measured by the ferric reducing ability of plasma (FRAP) assay was 0.027 mmol trolox equivalent/g (mmol TE/g) for dried walnut husk and 0.054 mmol TE/g for walnut husks that were not dried. Antioxidant potential was also evaluated using the total phenolic content (TPC) and 1,1-diphenyl-2-picryl-hydrazyl (DPPH) assays and the FRAP assay was found to linearly correlate to the TPC assa

    Liger for Next Generation Keck Adaptive Optics: Opto-Mechanical Dewar for Imaging Camera and Slicer

    Full text link
    Liger is a next generation adaptive optics (AO) fed integral field spectrograph (IFS) and imager for the W. M. Keck Observatory. This new instrument is being designed to take advantage of the upgraded AO system provided by Keck All-Sky Precision Adaptive-optics (KAPA). Liger will provide higher spectral resolving power (R∼\sim4,000-10,000), wider wavelength coverage (∼\sim0.8-2.4 μ\mum), and larger fields of view than any current IFS. We present the design and analysis for a custom-made dewar chamber for characterizing the Liger opto-mechanical system. This dewar chamber is designed to test and assemble the Liger imaging camera and slicer IFS components while being adaptable for future experiments. The vacuum chamber will operate below 10−510^{-5} Torr with a cold shield that will be kept below 90 K. The dewar test chamber will be mounted to an optical vibration isolation platform and further isolated from the cryogenic and vacuum systems with bellows. The cold head and vacuums will be mounted to a custom cart that will also house the electronics and computer that interface with the experiment. This test chamber will provide an efficient means of calibrating and characterizing the Liger instrument and performing future experiments.Comment: 8 pages, 6 figure

    A Glimpse of the Stellar Populations and Elemental Abundances of Gravitationally Lensed, Quiescent Galaxies at z≳1z\gtrsim 1 with Keck Deep Spectroscopy

    Get PDF
    Gravitational lenses can magnify distant galaxies, allowing us to discover and characterize the stellar populations of intrinsically faint, quiescent galaxies that are otherwise extremely difficult to directly observe at high redshift from ground-based telescopes. Here, we present the spectral analysis of two lensed, quiescent galaxies at z≳1z\gtrsim 1 discovered by the ASTRO 3D Galaxy Evolution with Lenses survey: AGEL1323 (M∗∼1011.1M⊙M_*\sim 10^{11.1}M_{\odot}, z=1.016z=1.016, μ∼14.6\mu \sim 14.6) and AGEL0014 (M∗∼1011.3M⊙M_*\sim 10^{11.3}M_{\odot}, z=1.374z=1.374, μ∼4.3\mu \sim 4.3). We measured the age, [Fe/H], and [Mg/Fe] of the two lensed galaxies using deep, rest-frame-optical spectra (S/N ≳\gtrsim 40\AA−1^{-1}) obtained on the Keck I telescope. The ages of AGEL1323 and AGEL0014 are 5.6−0.8+0.85.6^{+0.8}_{-0.8} Gyr and 3.1−0.3+0.83.1^{+0.8}_{-0.3} Gyr, respectively, indicating that most of the stars in the galaxies were formed less than 2 Gyr after the Big Bang. Compared to nearby quiescent galaxies of similar masses, the lensed galaxies have lower [Fe/H] and [Mg/H]. Surprisingly, the two galaxies have comparable [Mg/Fe] to similar-mass galaxies at lower redshifts, despite their old ages. Using a simple analytic chemical evolution model connecting the instantaneously recycled element Mg with the mass-loading factors of outflows averaged over the entire star formation history, we found that the lensed galaxies may have experienced enhanced outflows during their star formation compared to lower-redshift galaxies, which may explain why they quenched early.Comment: 18 pages, 11 figures, submitted to ApJ; comments welcom

    The Einstein polarization interferometer for cosmology (EPIC) and the millimeter-wave bolometric interferometer (MBI)

    Get PDF
    We provide an overview of a mission concept study underway for the Einstein Inflation Probe (EIP). Our study investigates the advantages and tradeoffs of using an interferometer (EPIC) for the mission. We also report on the status of the millimeter-wave bolometric interferometer (MBI), a ground-based pathfinder optimized for degree-scale CMB polarization measurements at 90 GHz
    • …
    corecore